Ayam Custom Objects Writers Guide

Randolf Schult{rschultz@informatik.uni-rostock.de) 2. Sep 2001

This document describes how to write a custom object for Ayam.

Contents

1 Introduction 2

2 Preparation 2

3 Functions 3
3.1 Initialization (mandatory) e 3
3.2 Create (mandatory) o e 5
3.3 Delete (mandatory) e 6
3.4 Copy (Mandatory) o v e e e e e e 7
3.5 Draw ..o 7
3.6 Shade e 8
3.7 Drawh-DrawHandles e 8
3.8 SetProp-SetProperties e e 9
3.9 GetProp-GetProperties e 10
3.10 GetPoint, Single Point Editing e 11
3.11 Write/Read (mandatory) 13
3.12 Wrib-Write RIB e e e 14
3.13 BBC - Bounding Box Calculation e 15
3.14 Notification 16
315 CONVEISION o o 16
3.16 Provide 16
307 Tree-Drop o e e e 17

4 Custom Obijects from the Tcl Side of Life 17
4.1 Property GUIElIemMeENts e e e 18

4.1.1 Labels. . . . e 19
4.1.2 Parameters 19

4.1.3 MENUS e e e e e 19

1. Introduction 2

4.1.4 Checkbuttons 19
415 ColorSelectors 20
4.1.6 FileSelectors e 20
4.1.7 Sting ENtries e 20
4.1.8 BUONS 20
4.2 TheCustomMenuU 21
5 Compiling, Installing, Loading a Custom Object 21

1 Introduction

What is a custom object? A custom object is a piece of shared code that gets loaded at runtime into the core of Ayam
to allow modeling with new types of geometric objects (a plug-in-system for object types).

You should take a look at (or print out) the filggdugins/csphere.c" and"plugins/csphere.tcl” from

the src directory of the Ayam distribution. They contain a more or less documented example custom object that does
nothing exciting, but implements a simple sphere. Additionally, they may serve as starting point for your own custom
object. Just copy the files and rename all occurences of the 8tSpbere” to your own new name.

Take a look at the modulé®xtrude.c” , and"icurve.c" in the objects sub directory of the sources. They
implement objects too, but support some additional advanced functionality: notification (extrude), single point editing
(icurve), conversion (extrude, icurve), and provide mechanism (icurve).

2 Preparation

You decided to implement a new custom object? Fine, here is what to do first:

e Pick a short, pregnant, descriptive, non colliding name for your object type. To avoid clashes, | suggest to
precede the name with the initials of the author (yours) as it is tradition with RenderMan shaders.

e Copy"csphere.c" and"csphere.tcl" to "yourname.c" and"yourname.tcl" respectively.
e Rename all occurences of csphere in those files to yourname.

e Edit the struct that holds the parameters of your object. This struct will be referred to later as the custom object.

Here is the corresponding code snippet from the csphere example:

#include "ayam.h"
/* csphere.c - csphere custom object */
static char *csphere_name = "CSphere";

static unsigned int csphere_id;

3. Functions 3

typedef struct csphere_object s
{

char closed;

char is_simple;

double radius;

double zmin, zmax;

double thetamax;
} csphere_object;

Now you are ready to adapt the implementation of some functions as they are described in the next sections of the
manual.

3 Functions

A custom object implements a set of functions that are called from the Ayam core now and then.

Some functions are mandatory, some that would e.g. implement point editing support or notification are not.

3.1 Initialization (mandatory)

int
Yourname_Init(Tcl_Interp *interp)

Initialization of a custom object is done by a function nan$eurname_Init(Tcl_Interp *interp)

Note, thatbyourname is the filename of the shared object that gets loaded, and that the first character of the name
has to be upcase, regardless of the case of the file name. It is a good idea to mimic the naming strategy of the csphere
example.

The initialization is called once when the custom objects code gets loaded into Ayam.
What does the initialization do? First, it registers the custom object at the Ayam core by calling:

ay_otype_register().

int ay_otype_register(char *name,
ay_createcb *crtcb,
ay_deletecb *delchb,
ay_copycb *copych,

ay_drawch *drawch,
ay_drawch *drawhcb,
ay_drawch *shadecb,

ay_propcb *setpropch,
ay_propcb *getpropch,
ay_getpntcb *getpntcb,
ay_readcb *readcb,
ay_writecb *writech,
ay_wribcb *wribcb,

3. Functions 4

ay_bbccb *bbccb,
unsigned int *type_index);

If the registration fails, the function returns a nonzero value. You should really check this return value, and if it is
nonzero call ay_error() with it and return TCL_ERROR.

The parameters of the function ay_otype_register() are as follows:

e char *name: pointer to a global string, containing the custom object type name
e some pointers to functions; the functions will be explained in the next sections

e unsigned int *type_index: pointer to a global variable that holds an identifier for registered types (will be filled
by ay_otype_register()), this identifier may be used for type checking and for registration of special functionality.

After the call to ay_otype_register(), callbacks for special functionality (notification, conversion, or provide mecha-
nism) may be registered.

Furthermore, you may specify with a call &y_matt_nomaterial(); that your new object type shall not be
associable with material objects, e.g. if it is just a geometric helper object that does not get exported to RIB.

Some new Tcl commands for additional functionality not covered by the provided standard and special callbacks may
be registered now by calling Tcl_CreateCommand().

Finally, it is time to load some Tcl code from Tcl files into the interpreter. This code implements the property GUIs of
the object type specific properties (do not worry, this is easy).

Csphere example:

/* note: this function _must_ be capitalized exactly this way
* regardless of filename (see: man n load)!

*/

int

Csphere_Init(Tcl_Interp *interp)

{

int ay_status = AY_OK;

char fname[] = "csphere_init";

ay_status = ay_otype_register(csphere_name,
csphere_createcb,
csphere_deletecb,
csphere_copychb,
csphere_drawch,
NULL, /* no points to edit */
csphere_shadecb,
csphere_setpropch,
csphere_getpropcb,
NULL, /* no picking */
csphere_readcb,
csphere_writecb,
csphere_wribchb,

3. Functions 5

csphere_bbccb,
&csphere_id);

if(ay_status)
{
ay_error(AY_ERROR, fname, "Error registering custom object!");
return TCL_ERROR;

[* source csphere.tcl, it contains Tcl-code to build
the CSphere-Attributes Property GUI */
if((Tcl_EvalFile(interp, "csphere.tcl")) = TCL_OK)
{
ay_error(AY_ERROR, fname,
"Error while sourcing \\\"csphere.tc\"I");
return TCL_OK;

ay_error(AY_EOUTPUT, fname,
"CustomObject \W'CSphere\\" successfully loaded.");

return TCL_OK;
} /* Csphere_Init */

The following sections describe the functions that are parameters of ay_otype_register().

3.2 Create (mandatory)

int yourname_createcb(int argc, char *argv[], ay_object *0);

In this callback you should allocate memory for your new object, and initialize it properly. Argc and argv are the
command line of thertOb yourname Tcl-command (invoked e.g. by the main menu er@ngate/Custom
Object/yourname , by Tcl scripts, or directly from the console). The user may deliver additional arguments to this
command, which may be evaluated by this callback.

Furthermore, in this callback you can adjust the attribute property of the newly created object, e.g. hiding it or
its children initially. Just set the appropriate flags in the ayam_object pointed ¢o ook up the definition of
ay_object ,inayam.h to see, what may be adapted.

If you want your object be able to have child objects you should sai-theparent attribute toAY TRUE You may
create first child objects in your create callback. But note, that each level in the scene hierarchy needs to be terminated
properly with a so called EndLevel object. Such an object might be created easily using ay_object_crtendlevel();:

ay_object *my_child = NULL;

[* create my_child here */

3. Functions 6

/* link my_child */

o->down = my_child;

[* terminate level */
ay_object_crtendlevel(&(my_child->next));

If you do not create child objects immediately, but eet>parent to true, Ayam will create the EndLevel object
automatically for you.

Csphere example:

int

csphere_createcb(int argc, char *argv[], ay_object *0)
{

csphere_object *csphere = NULL;

char fname[] = "crtcsphere”;

if(l0)
return AY_ENULL;

if(l(csphere = calloc(1, sizeof(csphere_object))))
{
ay_error(AY_EOMEM, fname, NULL);
return AY_ERROR;

csphere->closed = AY_TRUE;
csphere->is_simple = AY_TRUE;
csphere->radius = 1.0;
csphere->zmin = -1.0;
csphere->zmax = 1.0;
csphere->thetamax = 360.0;

o->refine = csphere;

return AY_OK;
} /* csphere_createcb */

3.3 Delete (mandatory)

int yourname_deletecb(void *c);

In this callback you should free all memory allocated for the custom object, the argument ¢ points to one of your
custom objects. No type check necessary.

Csphere example:

3. Functions 7

int
csphere_deletecb(void *c)

{
csphere_object *csphere = NULL;

if(!c)
return AY_ENULL,

csphere = (csphere_object *)(c);
free(csphere);

return AY_OK;
} /* csphere_deletecbh */

3.4 Copy (mandatory)

int yourname_copycb(void *src, void **dst);

The copy callback is mandatory too, it is vital for clipboard and undo functionality. You should allocate a new object
and copy the custom object pointed to by source to the new allocated memory, and finally return a pointer to the new
memory in dst. The argument src points to one of your custom objects. No type check necessary.

Csphere example:

int
csphere_copycb(void *src, void **dst)

{

csphere_object *csphere = NULL;

if(Isrc || !'dst)
return AY_ENULL,;

if(/(csphere = calloc(1, sizeof(csphere_object))))
return AY_EOMEM;

memcpy(csphere, src, sizeof(csphere_object));
*dst = (void *)csphere;

return AY_OK;
} /* csphere_copych */

3.5 Draw

int yourname_drawcb(struct Togl *togl, ay_object *0);

3. Functions 8

In this callback you should draw your custom object. You do not get a pointer to your custom object as parameter, but
a pointer to a Ayam object, which is a step higher in the object hierarchy!

This is, because you may freely decide whether to use the standard attributes stored with every Ayam object. These
are for instance affine transformations.

See the example source for information on how to finally get to your custom object.

Csphere example (extract):

int
csphere_drawch(struct Togl *togl, ay object *0)

{
csphere_object *csphere = NULL;

if(lo0)
return AY_ENULL;

csphere = (csphere_object *)o->refine;

if(lcsphere)
return AY_ENULL;

radius = csphere->radius;

return AY_OK;
} /* csphere_drawcb */

3.6 Shade

int yourname_shadecb(struct Togl *togl, ay_object *0);

This callback is basically the same as the draw callback, but the user expects to get a shaded represention of the object.

3.7 Drawh - Draw Handles

int yourname_drawhcb(struct Togl *togl, ay_object *0);

This callback is not mandatory, and needs just to be implemented if your object supports single point editing. If you
want to do this, you should draw witgiPoint() just the points of your object that may be modified by a single
point editing action in this callback.

3. Functions 9

3.8 SetProp - Set Properties

int yourname_setpropch(Tcl_Interp *interp, int argc, char *argv(],
ay_object *0);

Using this callback you copy data of your object type specific properties from the Tcl to the C context. Note the use
of Tcl_IncrRefCount() and Tcl_DecrRefCount() to avoid memory leaks.

Also note, that if your object is used as parameter object for a tool object you should inform the tool object (your
parent) about changes now using:

ay_status = ay_notify_parent(void);

Csphere example:

/* Tcl -> C! */

int

csphere_setpropcb(Tcl_Interp *interp, int argc, char *argv[], ay_object *0)
{

char *nl = "CSphereAttrData";

Tcl_Obj *to = NULL, *toa = NULL, *ton = NULL;

csphere_object *csphere = NULL;

int itemp = 0;

if(l0)
return AY_ENULL,;

csphere = (csphere_object *)o->refine;

toa
ton

Tcl_NewStringObj(n1,-1);
Tcl_NewsStringObj(n1,-1);

Tcl_SetStringObj(ton,"Closed",-1);

to = Tcl_ObjGetVar2(interp,toa,ton,TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);
Tcl_GetintFromObj(interp,to, &itemp);

csphere->closed = (char)itemp;

Tcl_SetStringObj(ton,"Radius",-1);
to = Tcl_ObjGetVar2(interp,toa,ton,TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);
Tcl_GetDoubleFromObj(interp,to, &csphere->radius);

Tcl_SetStringObj(ton,"ZMin",-1);
to = Tcl_ObjGetVar2(interp,toa,ton,TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);
Tcl_GetDoubleFromObij(interp,to, &csphere->zmin);

Tcl_SetStringObj(ton,"ZMax",-1);
to = Tcl_ObjGetVar2(interp,toa,ton,TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);

3. Functions

Tcl_GetDoubleFromObj(interp,to, &csphere->zmax);

Tcl_SetStringObj(ton,"ThetaMax",-1);
to = Tcl_ObjGetVar2(interp,toa,ton, TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);
Tcl_GetDoubleFromObj(interp,to, &csphere->thetamax);

if((fabs(csphere->zmin) == csphere->radius) &&
(fabs(csphere->zmax) == csphere->radius) &&
(fabs(csphere->thetamax) == 360.0))
{
csphere->is_simple = AY_TRUE;
}
else
{
csphere->is_simple = AY_FALSE;
}

Tcl_IncrRefCount(toa);Tcl_DecrRefCount(toa);
Tcl_IncrRefCount(ton); Tcl_DecrRefCount(ton);

return AY_OK;
} * csphere_setpropcbh */

3.9 GetProp - Get Properties

int yourname_getpropcb(Tcl_Interp *interp, int argc, char *argv[],
ay_object *0);

Using this callback you copy data of your object type specific properties from the C to the Tcl context.

Csphere example:

* C -> Tclt ¥/

int

csphere_getpropcb(Tcl_Interp *interp, int argc, char *argv[], ay_object *0)
{

char *nl1="CSphereAttrData”;

Tcl_Obj *to = NULL, *toa = NULL, *ton = NULL;

csphere_object *csphere = NULL;

if(l0)
return AY_ENULL,

csphere = (csphere_object *)(o->refine);

toa = Tcl_NewStringObj(nl,-1);

3. Functions 11

ton = Tcl_NewStringObj(n1,-1);

Tcl_SetStringObj(ton,"Closed",-1);
to = Tcl_NewlntObj(csphere->closed);
Tcl_ObjSetVar2(interp,toa,ton,to,TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);

Tcl_SetStringObj(ton,"Radius",-1);
to = Tcl_NewDoubleObj(csphere->radius);
Tcl_ObjSetVar2(interp,toa,ton,to,TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);

Tcl_SetStringObj(ton,"ZMin",-1);
to = Tcl_NewDoubleObj(csphere->zmin);
Tcl_ObjSetVar2(interp,toa,ton,to, TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);

Tcl_SetStringObj(ton,"ZMax",-1);
to = Tcl_NewDoubleObj(csphere->zmax);
Tcl_ObjSetVar2(interp,toa,ton,to, TCL_LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);

Tcl_SetStringObj(ton,"ThetaMax",-1);
to = Tcl_NewDoubleObj(csphere->thetamax);
Tcl_ObjSetVar2(interp,toa,ton,to,TCL_ LEAVE_ERR_MSG | TCL_GLOBAL_ONLY);

Tcl_IncrRefCount(toa); Tcl_DecrRefCount(toa);
Tcl_IncrRefCount(ton); Tcl_DecrRefCount(ton);

return AY_OK;
} /* csphere_getpropcb */

3.10 GetPoint, Single Point Editing

int yourname_getpntcb(ay_object *o, double *p);

This callback enables all the single point editing facilities (including the selection mechanism for single points) for
your object.

With this callback you get an object and a point in the local space of that object. You are asked to search through your
internal structures for points of yours that match the coordinates givepl'in If there are such points you should
build an array of pointers to your points as the following example does:

yourname_getpntcb(ay_object *o, double *p)

{

double *control = NULL, min_distance = ay_prefs.pick_epsilon,
distance = 0.0;

[* first, we clear the old array */
if(ay_point_edit_coords) free(ay_point_edit_coords);
ay_point_edit_coords = NULL;

3. Functions 12

/* now we scan our points for the given coordinates*/
control = array_of your_points;
for(i = 0; i < max_points; i++)
{
distance = AY_VLEN((objX - control[j]),
(objY - control[j+1]),
(objz - control[j+2]));
if(distance < min_distance)

{
pecoords = &(control[j]);
min_distance = distance;
}
j +=3;

}

if(lpecoords)
return AY_OK;

[* are the points homogenous? */
ay_point_edit_coords_homogenous = AY_FALSE;

/* now we create the new array */

if('(ay_point_edit_coords = calloc(1,sizeof(double*))))
return AY_OUTOFMEM,;

/* and fill it */

ay_point_edit_coords_number = 1;

ay_point_edit_coords[0] = pecoords;

return AY_OK;
} Ix %/

The code above does just handle the selection of a single point, it is possible, however, to put an arbitrary number
of points in the array at once! This is necessary for the special cagdQ)f == DBL_MIN) && (p[1] ==

DBL_MIN) && (p[2] == DBL_MIN) . Ifall elements ofp" are"DBL_MIN" you should put all editable points

of the object into the array (the user wants to select all points).

The following global variables are in use: ay_point_edit coords (the adress of the ar-
ray), ay_point_edit_coords number (an integer that tells Ayam, how many pointers are in
ay_point_edit_coords), ay_point_edit_coords_homogenous (a flag that tells Ayam, wether the points

are homogenous or not; note, that there can only be points of one type in the array).

Also note, that the Ayam core will poke into the memory you pointed it to later. The core expects the points itself to
be arrays of doubles:

double a_non_homogenous_point[3];
double a_homogenous_point[4];

3. Functions 13

3.11 Write/Read (mandatory)

int yourname_readcb(FILE *fileptr, ay_object *0);

These callbacks are for writing and reading Ayam scene files. As you can see in the example source, simple fprintf(),
fscanf() calls are currently in use. Note, that you do not have to worry about your child objects, if there are any, they
will be saved automagically.

Csphere example:

int

csphere_readcb(FILE *fileptr, ay object *0)
{

csphere_object *csphere = NULL;

int itemp = O;

if(lo)

return AY_ENULL;

if(!(csphere = calloc(l, sizeof(csphere_object))))
{ return AY_EOMEM; }

fscanf(fileptr,"%d\n",&itemp);
csphere->closed = (char)itemp;
fscanf(fileptr,"%lg\n",&csphere->radius);
fscanf(fileptr,"%Ig\n",&csphere->zmin);
fscanf(fileptr,"%lg\n",&csphere->zmax);
fscanf(fileptr,"%lg\n",&csphere->thetamax);

if((fabs(csphere->zmin) == csphere->radius) &&
(fabs(csphere->zmax) == csphere->radius) &&
(fabs(csphere->thetamax) == 360.0))
{
csphere->is_simple = AY_TRUE;
}
else
{
csphere->is_simple = AY_FALSE;
}
o->refine = csphere;
return AY_OK;
} /¥ csphere_readch */
int
csphere_writecb(FILE *fileptr, ay_object *o)
{

csphere_object *csphere = NULL;

3. Functions 14

if(lo0)
return AY_ENULL,;

csphere = (csphere_object *)(o->refine);

fprintf(fileptr, "%d\n", csphere->closed);
fprintf(fileptr, "%g\n", csphere->radius);
fprintf(fileptr, "%g\n", csphere->zmin);
fprintf(fileptr, "%g\n", csphere->zmax);
fprintf(fileptr, "%g\n", csphere->thetamax);

return AY_OK;
} /* csphere_writecb */

3.12 Wrib - Write RIB

int yourname_wribcb(char *file, ay_object *0);

This callback is for exporting your object to a RIB. Just use the appropriate Ri-calls. Just like the drawing callbacks
you get a pointer to a Ayam object and not to your custom object. Csphere example:

int
csphere_wribcb(char *file, ay object *o)

{
csphere_object *csphere = NULL;

if(l0)
return AY_ENULL;

csphere = (csphere_object*)o->refine;

if(lcsphere->closed)
{

RiSphere((RtFloat)csphere->radius,
(RtFloat)csphere->zmin,
(RtFloat)csphere->zmax,
(RtFloat)csphere->thetamax,
NULL);

3. Functions 15

return AY_OK;
} /* csphere_wribch */

3.13 BBC - Bounding Box Calculation

int yourname_bbccb(ay_object *o, double *bbox, int *flags);

This callback is for the calculation of bounding boxdshox" points to an array of 24 doubles (describing 8 points),
the bounding box. You may put additional information ifilags” to tell the core that you:

1. have a regular bounding box (leave flags at zero)
2. have a regular bounding box but the boxes of the children should be discarded (set flags to 1)

3. have no own bbox, but children have (set flags to 2)

Csphere example:

int

csphere_bbccb(ay_object *o, double *bbox, int *flags)
{

double r = 0.0, zmi = 0.0, zma = 0.0;
csphere_object *csphere = NULL;

if(lo || !bbox)
return AY_ENULL;

csphere = (csphere_object *)o->refine;

r = csphere->radius;
zmi = csphere->zmin;
zma = csphere->zmax;

/* XXXX does not take into account ThetaMax! */

* P1 *

bbox[0] = -r; bbox[1]
* P2 *

bbox[3] = -r; bbox[4]
I* P3 *

bbox[6] = r; bbox[7] = -r; bbox[8] = zma;
[* P4 *

bbox[9] = r; bbox[10] = r; bbox[11] = zma;

r; bbox[2] = zma;

-r; bbox[5] = zma;

[* P5 */
bbox[12] = -r; bbox[13] = r; bbox[14] = zmi;
[* P6 *

3. Functions 16

bbox[15] = -r; bbox[16] = -r; bbox[17] = zmi;
* P7 *
bbox[18] = r; bbox[19] = -r; bbox[20] = zmi;
I* P8 *
bbox[21] = r; bbox[22] = r; bbox[23] = zmi;

return AY_OK;
} /* csphere_bbccbh */

3.14 Notification

int yourname_notifycb(ay_object *0);

The notification callback is for custom objects that rely on other objects to be children of them (e.g. Revolve).

The notification callback is to inform you, that something below your custom object has changed, and you should
probably adapt the custom object to the change. The Revolve object e.g. redoes the revolution.

Noatification callbacks have to be registered in the initialization callback using:

int ay_notify_register(ay_notifycb *notcb, unsigned int type_id);

3.15 Conversion

int yourname_convertcb(ay_object *o);

Conversion callbacks are in use for objects that may be converted to objects of a different type, e.g. the interpolat-
ing curve object (ICurve) may be converted to a NURBCurve object, or the Revolve object may be converted to a
NURBPatch object.

In the conversion callback a new object should be created from the object pointed to"by Fur-
thermore, this object needs to be linked into the scene usingay object link()" . See
“icurve.c/ay_icurve_convertcb()" for an example.

Conversion callbacks have to be registered in the initialization callback using:

int ay_convert_register(ay_convertcb *convcb, unsigned int type_id);

3.16 Provide

int yourname_providecb(ay_object *o, unsigned int type,
ay_object **result);

Provide callbacks are in use for objects that are able to provide objects from a different type. This is very much like
the conversion (above) but the objects are not to be linked into the scene but used by e.g. a parent procedural object
as parameter for its procedure. For instance, using the provide mechanism a Revolve object is able to revolve an
interpolating curve. The argumefttype” denotes the desired type of the new object &edult" should be

filled with an object of the wanted type. S&eurve.c/ay_icurve_providecb()" for an example.

Provide callbacks have to be registered in the initialization callback using:

int ay_provide_register(ay_providecb *provcb, unsigned int type_id);

4. Custom Objects from the Tcl Side of Life 17

3.17 Tree-Drop

int yourname_dropcb(ay_object *0);

The tree-drop callback is for custom objects that want to get notified, when an object is dropped onto them in the tree
view to invoke some special actions. This is e.g. used by the material objects that connect to all geometric objects
dropped onto them, or by the view object which uses the camera settings from a camera object which is dropped onto
the view object.

Tree-drop callbacks have to be registered in the initialization callback using:

int ay_tree_registerdrop(ay_treedropcb *cb, unsigned int type_id)

4 Custom Objects from the Tcl Side of Life

Yes, custom objects need some Tcl code too.
Take a look at the filécsphere.tcl”

This code, first, fills two important variable€CSphere_props" and"CSphereAttr"

global ay CSphere_props CSphereAttr CSphereAttrData
set CSphere_props { Transformations Attributes Material Tags CSphereAttr }

array set CSphereAttr {
arr CSphereAttrData
sproc ™

gproc
w fCSphereAttr

}

"CSphere_props" holds a list of all properties of the CSphere. There are well known standard properties
"Transformations Attributes Material Tags" and a new special propertg SphereAttr"

The handling of the standard properties is done entirely by the core. No need for further adjustments.

The new special propertyfCSphereAttr" , however, must be introduced to the core properly now. This is done by
filling a global array named as the property, in our case the property, and the array, are'G&pkdreAttr"

The single elements denote:

1. arr: name of a global array, where this property holds its data

2. sproc: name of a procedure that transports the data from Tcl context to C context. If this isgpnpty (")
the core will use the internal mechanism and call the callback provided on registration of your object type. This
is the point where you may jump into own property functionality, if you need to provide arguments to your own
functions or do some other magic (call other commands etc.pp.).

3. gproc: name of a procedure that transports the data from C context to Tcl context. See discussion above.

4. Custom Objects from the Tcl Side of Life 18

4. w: name of the window of the property GUI

Now the property GUI itself needs to be created:

array set CSphereAttrData {
Closed 1

Radius 1.0

ZMin -1.0

ZMax 1.0

ThetaMax 1.0

}

create CSphereAttr-Ul
set w [frame $ay(pca).$CSphereAttr(w)]

addCheck $w CSphereAttrData Closed
addParam $w CSphereAttrData Radius
addParam $w CSphereAttrData ZMin
addParam $w CSphereAttrData ZMax
addParam $w CSphereAttrData ThetaMax

The code is really simple and creates a static GUI consisting of a checkbox and four entries for parameters. The
different available GUI elements are discussed in the next sections.

Finally, we create an entry in the main menu, for easy creation of our new object type:

add menu entry to the Create/Custom Object sub-menu
mmenu_addcustom CSphere "crtOb CSphere; uS; sL; rv"

tell the rest of Ayam (or other custom objects), that we are loaded
lappend ay(co) CSphere

4.1 Property GUI Elements

A property GUI is usually organized in list form. The single list elements are mostly built by calling a single Tcl
command of the Ayam core. All elements are implemented in thédietcl" (UIE - User Interface Elements).

The template for such a command (that creates a single line of a property GUI) is as follows:
add {type } w array name [default]

type is the type of the entry. Predefined and heavily used by the rest of Ayam are: Text, Param, Menu, Check, Color,
File, String and Command. Depending on the type, the actual parameters are a bit different but this is documented in
detail later on...

wis the window the new entry should be created in. Just pass the name of the window of the property GUI.
array is the name of the (global) array where the parameters that should be edited are actually stored.

name is the name of the variable in the global areayay that this entry should manipulate. In addition, this name
is often used in a label to mark the entry. You should use descriptive and not too long variable names.

4. Custom Objects from the Tcl Side of Life 19

default is a list of default values. However, not all GUI elements support those!

You are, of course, not tied to the aforementioned entries. The seashell custom object, for instance, implements an
own type, an entry consisting of a slider, that is even able to issue apply operations while dragging the slider.

The following sections document all core entry types.

4.1.1 Labels

addText w f text

adds a line containing the tetext to the property GUIf is required to generate window names, aee?2 etc.;f
must be unique over all entries of a property GUI.

Example:

set w [frame $ay(pca).$CSphereAttr(w)]
addText $w CSphereAttrData el "CSphere Attributes"

4.1.2 Parameters

addParam w array name [default]

creates the standard parameter manipulation entry consisting of a label, two buttons for quick parameter manipulation
by doubling, dividing the value, and finally an entry for direct manipulation.

Example:

set w [frame $ay(pca).$CSphereAttr(w)]
addParam $w CSphereAttrData Radius

4.1.3 Menus

addMenu w array name list

adds a menu button, that toggles between the elements of thstlist The variablexame always contains the index
of the selected entry. Note, that the variable name has to exist before the call to addMenu!

Example:

set CSphereAttrData(Type) 0
set w [frame $ay(pca).$CSphereAttr(w)]
addMenu $w CSphereAttrData Type [list Simple Enhanced]

4.1.4 Checkbuttons

addCheck w array name

adds a single check button to the GUI. The variatadene will be set to either 0 or 1 according to the state of the check
button.

4. Custom Objects from the Tcl Side of Life 20

set w [frame $ay(pca).$CSphereAttr(w)]
addCheck $w CSphereAttrData Closed

4.1.5 Color Selectors

addColor w array name [default]

adds a color selection facility. The color values will be written to variables nafnadie}_R, {name}_G, and
{name}_B.

Example:

set w [frame S$ay(pca).$CSphereAttr(w)]
addColor $w CSphereAttrData SphereCol

4.1.6 File Selectors

addFile w array name
adds a string entry and a small button, that starts the standard file requester, handy for strings that contain file names.

Example:

set w [frame $ay(pca).$CSphereAttr(w)]
addFile $w CSphereAttrData FName

4.1.7 String Entries

addstring w array name [default]
adds a simple string entry.

Example:

set w [frame $ay(pca).$CSphereAttr(w)]
addString $w CSphereAttrData Name

4.1.8 Buttons

addCommand w f text command

adds a big button labelled witlext that starts the commarmbmmand f is (similar to text entries) a name for a
window, | suggest to name the windows, c2 etc.;f must be unique over all entries of a property GUI.

Example:

set w [frame $ay(pca).$CSphereAttr(w)]
addCommand $w cl "PressMe!" "puts Hi"

5. Compiling, Installing, Loading a Custom Object 21

4.2 The Custom Menu

You may link additional functionality of your custom object to entries in the custom menu.

The following example code snippet shows how to do that:

link proc fooproc to Custom menu

we need access to global array "ay"

global ay

always create a cascaded sub-menu

$ay(cm) add cascade -menu $ay(cm).foo -label "Foo"
create menu

set m [menu $ay(cm).foo]

create menu entry

$m add command -label "Foo(l)" -command fooproc

Note, that you should always create a new sub-menu using a cascade entry instead of creating entries directly in the
custom menu.

5 Compiling, Installing, Loading a Custom Object

The source code of an Ayam custom object needs to inchyaden.h , ayam.h in turn includes Togl (OpenGL,
Tcl/Tk, X11) and RI (RenderMan Interface) headers. When compiling your custom object, all you need to do is to
make sure the compiler finds all those includes. See the Makefile of Ayam on how to collect all necessary information
to build -1 directives. The targetsphere.so: should provide enough information on how to compile a custom
object.

Compile your source with the -c switch. Then use the right switch for your compiler (-shared ?) to make a shared
object (.so) from the .o(s) and you should be ready to test (shared -o foo.so f00.0).

Install the shared object along with the Tcl file containing the property GUI procedure and other stuff.

To load a custom object use the appropriate menu entry in the File menu or the io_Ic (load custom) command. Both
methods will automatically change the working directory to the location of the shared object to allow it to find the
accompanying Tcl script more easily. Do not useltte®l command of the Tcl core directly!

If you want your custom object to be loaded automatically on startup of Ayam just create a small Tcl-script and load
that on startup using the preference settngfs/Main/Scripts . Example:

this script loads the mfio-plugin into Ayam
io_lc /home/randi/ays/plugins/mfio.so
return

